Dr. Volker Runkel ecoObs GmbH

Automation in bat detectors and call identification

capabilities, current limitations and perspectives

III Spanish Bat Meeting A Coruña, November 20th and 21st 2010

Sonntag, 5. Dezember 2010

Setting the scene

investigations of bat sonar systems

- intensive research on acoustics and ecology (Griffin 1960, Pye 1973, Pye 1979, Ahlen 1981, Fenton 1981, Barclay 1982, Weid 1985, Fenton 1988, ...)
- bats are more easily accessible today

 since a few years increased interest: nature conservation and FFH/Natura2000 (EU)

Increased needs

- society, NGOs and government need reliable data for planning
- sampling locations/requests get more elaborate
 - long-term monitoring
 - sites like nacelles of wind turbines, motorway borders, ...
- nature consultants need tools for surveys that are
 - economical
 - automatic
 - fool-proof

Increased needs

- society, NGOs and government need reliable data for planning
- sampling locations/requests get more elaborate
 - long-term monitoring
 - sites like nacelles of wind turbines, motorway borders, ...
- nature consultants need tools for surveys that are
 - economical
 - automatic
 - fool-proof

unbiased collection and objective analysis of activity data

Why automation?

- Large data sets in monitoring
- reproducible, comparable data
- improved surveys
 - multiple sampling sites at the same time
 - higher rate of sampling possible (not only a few nights)
- Economical: example based on batcorder

Manual detection	on / analyi	S		Automatic detect			
	Time	Basis	Sum		Time	Basis	Sum
Field work (16 nights á 8 hours)	128 hrs	45€	5760 €	Deployment of 2 batcorders (16 x 2 hours)	32 hrs	45€	1440 €
Analysis of 800 recordings (20/hr)	40 hrs	40 €	1600 €	Database import, analysis & control (2 hr / night)	32 hrs	40 €	1280 €
Overall			7360 €	Overall			2720 €

Why automation?

- Large data sets in monitoring
- reproducible, comparable data
- improved surveys
 - multiple sampling sites at the same time
 - higher rate of sampling possible (not only a few nights)
- Economical: example based on batcorder

Manual detection	on / analyi	S		Automatic detect				
	Time	Basis	Sum		Time	Basis	Sum	
Field work (16 nights á 8	128 hrs	45€	5760 €	Deployment of 2 batcorders (16 x 2	32 hrs	45 €	1440 €	
hours)		Diffe	erenc	e: 4640€				
Analysis of	40 hrs	40 €	1600 €	Database import,	32 hrs	40 €	1280 €	
800 recordings				analysis & control				
(20/hr)				(2 hr / night)				
Overall			7360 €	Overall			2720 €	

Levels of automation

unattended recording of activity in the field

automatic detection of calls

automatic measurement extraction

automatic species result per bat pass

Requirements for automated detection

reliable and comparable data

- **objective** triggering/detection
- **omnidirectional** for all frequencies
- known and calibrated sensitivity
- devices must be identical in "behaviour"
- **high quality** recordings for automated identification
- no insensitive interval

(after Hayes 2000)

Requirements for automated detection

- reliable and comparable data
 - **objective** triggering/detection
 - **omnidirectional** for all frequencies
 - known and calibrated sensitivity
 - devices must be identical in "behaviour"
 - **high quality** recordings for automated identification
 - no insensitive interval

(after Hayes 2000)

- the user wants
 - independent/long runtime
 - weather-proof / robust
 - low price

Current solutions for unattended recording

- div. simple solutions (*Horchboxen* etc.)
- Anabat SD2 (Titley)
- BATLOGGER (Switzerland)
- Songmeter (Wildlife Acoustics)
- Pettersson D500x
- ecoObs batcorder

Anabat SD2

- Specs
 - frequency-division and zero-crossing analysis
- Pros
 - very small data amounts
 - GSM data transfer (with GLM add-on)
 - long runtime
- Cons
 - not calibrated and highly directional microphone
 - high reduction of data, sound data is lost
 - call analysis ± manual

BATLOGGER

• Specs

- Samplerate 312.5kHz, 16 bit
- SDHC/SD memory card
- Pros
 - Built in GPS
 - small, good for hand-held usage
 - database available with automatic analysis
 - different trigger functions
- Cons
 - not calibrated
 - low sampling rate
 - low runtime (18 hrs.)
 - directional microphone

batlogger.ch

SM2Bat

• Specs

- Samplerate 192 kHz (stereo), 384 kHz (mono), 16 bit
- SDHC/SD memory cards
- Pros
 - high data storage (4 cards)
 - rel. cheap, robust
 - stereo
 - battery runtime 9 nights
- Cons
 - not calibrated
 - low sampling rate
 - handling not optimized
 - no special call trigger

www.wildlifeacoustics.com/ sm2_bats.php

Pettersson D500x

• Specs

- Samplerate 300/500 kHz, 16 bit
- CF memory cards
- Pros
 - high data storage (4 cards)
 - high quality recordings
- Cons
 - not calibrated
 - field installation difficult
 - directional microphone
 - no special call trigger

batsound.com/ psondet.html#D500Xseries

batcorder

• Specs

- Samplerate 500 kHz, 16 bit
- SDHC memory card
- Pros
 - calibrated
 - sensitive bat call trigger
 - rugged design
 - high quality recordings
 - runtime 7 to 9 nights

• Cons

• expensive

Problems

- microphone
 - directionality and its setup
 - frequency response
- call quality
 - signal to noise ratio
 - echos
 - samplerate

- ease of use
 - installation in the field, in nacelles, ...
- runtime
 - battery, storage
- triggering of recordings
 - bushcrickets, ...
- comparability of devices

Perspectives

- sensitivity/microphone calibration
 - auto-calibration (for the batcorder)
- battery and storage technology
 - longer runtime while high quality recordings
- smaller size/weight of units
 - easier deployment
- decentralised sensors, central storage
- online (pre-)analysis

So, tell me: Who is calling?

Acoustic identification of bats

- listening to calls through heterodyne, frequency division or time expansion systems
 - using frequencies and rhythm
 - highly subjective
 - but better integration possible
 - visual information in addition

 depending on many influences and not feasible for monitoring

- influences like who is listening, how long can you hear the bat, number of bats and species calling
- not suited for long term monitoring or comparison of locations

computerized analysis

• spectrum, sonagram, ...

manual measurement of single calls

- comparison with literature
- own experience

overview of parameters

• many articles, http://www.batecho.eu

- computerized analysis
 - spectrum, sonagram, ...
- manual measurement of single calls
 - comparison with literature
 - own experience
- overview of parameters
 - many articles, http://www.batecho.eu

requency

computerized analysis

• spectrum, sonagram, ...

manual measurement of single calls

- comparison with literature
- own experience

overview of parameters

• many articles, http://www.batecho.eu

computerized analysis

• spectrum, sonagram, ...

manual measurement of single calls

- comparison with literature
- own experience

overview of parameters

many articles, http://www.batecho.eu

computerized analysis

• spectrum, sonagram, ...

manual measurement of single calls

- comparison with literature
- own experience

overview of parameters

• many articles, http://www.batecho.eu

computerized analysis

spectrur

manual r
compari
own exp

very time consuming
error-prone w/o statistical analysis
users w/o experience?

- overview of parameters
 - many articles, http://www.batecho.eu

Automatic ID: Features

- Finding calls
 - automatic extraction of possible calls
- Call representation
 - description of each call: measurements, image, ...
- Species identification
 - comparison with reference calls
 - recognition of outliers and other signals
- Result extraction
 - None, one or many species per call sequence

- Automated measuring and value extraction
 - quality of recordings, echos, call fragments, ...
 - speed/time for measuring
- Statistical analysis
 - different algorithms, per call, per sequence, weighting, ...
 - reference: selection of calls, social calls, outlier detection
 - also: **regional differences** (call variability)
- Extraction of results
 - aggregation of results per recording (multiple species)
 - number of species, order of species, ... and all the noise

- Automated measuring and value extraction
 - quality of recordings, echos, call fragments, ...
 - speed/time for measuring
- Statistical analysis
 - different algorithms, per call, per sequence, weighting, ...
 - reference: selection of calls, social calls, outlier detection
 - also: **regional differences** (call variability)
- Extraction of results
 - aggregation of results per recording (multiple species)
 - number of species, order of species, ... and all the noise

- Extraction of results
 - aggregation of results per recording (multiple species)
 - number of species, order of species, ... and all the noise

- Automated measuring and value extraction
 - quality of recordings, echos, call fragments, ...
 - speed/time for measuring
- Statistical analysis
 - different algorithms, per call, per sequence, weighting, ...
 - reference: selection of calls, social calls, outlier detection
 - also: **regional differences** (call variability)
- Extraction of results
 - aggregation of results per recording (multiple species)
 - number of species, order of species, ... and all the noise

- Automated measuring and value extraction
 - quality of recordings, echos, call fragments, ...
 - speed/time for measuring
- Statistical analysis
 - different algorithms, per call, per sequence, weighting, ...
 - reference: selection of calls, social calls, outlier detection
 - also: **regional differences** (call variability)
- Extraction of results
 - aggregation of results per recording (multiple species)
 - number of species, order of species, ... and all the noise

000				22060	06-bc-04-0	058.raw				\Box
	POF	<u>III</u>	4	4						
Drucken F	PDF speichern	Bild speichern	Vorheriger Ruf	Nächster Rut	f			Vorhe	rige Aufnahme	Nächste Aufnahme
104 135	38	101	41 98	29	34	76	111	96	130	161
120										
105										
90			:			:				•
75			, , ,				•	:	:	
60 :			· · · · · · · · · · · · · · · · · · ·		:		:			
45					, 	:	ĺ	<u> </u>	ĺ	į
30	•	<u>``</u> ``	· ·				<u> </u>	· · ·	27.49 kH	z
15				•						
Pkuh 58 % 5ms	Spec. 0 %	Pkuh Pku 92 % 86	uh Mnat % 59 %	Mnat 84 %	Pkuh 64 %	Mnat 78 %	Pkuh 65 %	Pkuh 66 %	Pkuh 53 %	Pmid 96 %
Schliessen	/Dokumente/	(Aufnahmen_batco	rder/Schweiz/bc	04/062206/2	220606-bc-04	-0058.raw	v	••• •	Speichern	

00	0			22060	6-bc-04-002	5.raw				\Box
É				4				-		*
Druc	ken PDF spe	ichern Bild spe	ichern Vorheriger R	uf Nächster Ruf				Vorherige Aufr	ahme Näch	ste Aufnahme
ſ	12	6 127	111	112	127	121	132	120	123	119
135										
120										
105										
105										
90										
75										
15										
60										
45	4	3.50 kHz					:		:	:
			ì	Λ	ì	1	, ,	1	ì	Ì
30	-			\sim		\sim	\sim		\sim	\sim
15				:						
	Niei 43 %	Spec. 0 %	Niel 60 %	Vmur 88 %	Vmur 61 %	Spec. 0 %	Vmur 58 %	Spec. 0 %	Vmur 94 %	Vmur 73 %
51	ns	_	(*******	******	******	*******))++
Schlie	ssen /Dok	umente/Aufnahmen	n_batcorder/Schweiz/	bc04/062206/22	20606-bc-04-0	025.raw		Speich	nern 🔊 🔊	

Analysis noise

Frequency of confusion of single calls based on OOB of randomForest

Data interpretation and utilization

- Error rate leads to a certain amount of falsely identified species
 - that is how probabilities work
 - hierarchical procedure as in batIdent helpful in overlapping call repertoire
- Many recordings only identified on genus level / group level
 - same problem exists for manual analysis!
- A way to deal with this noise is necessary

Dealing with noise: human vs. machine

- Manual analysis
 - context information is used
 - we know species A was recorded 5 seconds ago and can use this information
 - Danger: circular conclusions
- Machine analysis
 - single calls, not even context within recording used
 - each sequence independently

How good are human experts?

- manual control not possible for larger data sets
 - we talk about 10.000 recordings or more
- Depends on call quality, recording situation and species
 - not necessarily better than automatic systems!

How good are human experts?

Table 1. Summary classification rates of bat recordings, assessed by using sensitivity (recordings correctly classified) and positive predictive power (PPP; predictions that were actually recordings of that species) for humans and artificial neural networks (ANNs).

	<i>N</i> *	Humans	ANNs			
Taxon		Number of confusion species	Median percent sensitivity	Median percent PPP	Percent sensitivity	Percent PPP
Rhinolophus ferrumequinum	2	0	100 (100-100)	100 (100-100)	100	100
Rhinolophus hipposideros	2	0	100 (100-100)	100 (100-100)	100	100
Rhinolophus (to genus)	4		100 (100-100)	100 (100-100)	100	100
Myotis brandtii (Eversmann, 1845)	3	8	17 (0-33)	18 (0-33)	67†	22
Myotis mystacinus (Kuhl, 1817)	4	5	15 (0-25)	20 (0-32)	0	0
Myotis bechsteinii (Kuhl, 1817)	4	6	6 (0-25)	5 (0-39)	0	‡
Myotis nattereri (Kuhl, 1817)	5	6	75 (45-95)	67 (50-89)	80	53
Myotis daubentonii	5	6	40 (20-60)	40 (25-45)	30	38
Myotis (to genus)	21	_	95 (86-100)	95 (92-100)	100	100
Pipistrellus pipistrellus	3	1	100 (100-100)	100 (100-100)	100	100
Pipistrellus pygmaeus	2	2	100 (100-100)	100 (100-100)	100	100
Pipistrellus (to genus)	5	_	100 (100-100)	100 (100-100)	100	100
Nyctalus leisleri	3	5	33 (0-67)	67 (0-100)	33	100
Nyctalus noctula	3	2	100 (100-100)	75 (75-100)	100	86
Nyctalus (to genus)	6	-	67 (67-83)	100 (80-100)	75	100
Eptesicus serotinus	4	7	50 (50-75)	67 (53-75)	88 [†]	78†
Barbastella barbarstellus	2	5	0 (0-100)	0 (0-100)	50	50
Plecotus auritus (L., 1758)	3	6	67 (50-100)	55 (43-67)	83	63
Plecotus [§] (to genus)	3	-	100 (67-100)	50 (40-65)	83	63

From: Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks; N. Jennings, S. Parsons, and M.J.O. Pocock 2008

Available tools

- Omnibat (Ecocom, Sweden)
- BatScope (Martin Obrist, WSL)
- batldent (ecoObs GmbH)
- Sonobat (USA)

- available since 2010: http://www.omnibat.se
- works with all file formats
 - internally transformed to 10x time expanded format
- includes 10 species and 1 genus (*Myotis*): focused on northern species
 - Nyctalus noctula, N. leisleri, V. murinus, E. nilssonii, E. serotinus, P. pygmaeus, P. pipistrellus, P. nathusii, Pl. auritus, B. barbastellus
 - 5 new species planned for 2011 (extension for European species)
- ID process
 - uses image-based identification approach
 - 0.1 to 1 seconds calculation per recording
 - sequences for manual control are suggested
 - echos and non-bat-signals etc. are usually no problem

BatScope

- Experience based on BATIT (since ~1995), avail since Nov. 2010
- Optimized for the BATLOGGER
- 24 species and genus *Plecotus*
 - all swiss species, w/o N. lasiopterus
- ID process
 - parameter extraction and different algorithms
 - image approach as backup
 - bushcricket recognition, basic outlier detection
 - manual control/interaction necessary when more than one species
 - regional species subsets planned
- http://www.wsl.ch/fe/biodiversitaet/produkte/batscope/index_DE

- former bcDiscriminator (since 2006)
- needs measurement files
 - currently from bcAdmin or bcAnalyze
 - containing ~100 derived parameters
- 28 species (3 complexes), 11 groups
 - ~ 600 calls for training per species
- features
 - multi-step analysis (genus/groups/species)
 - randomForest for identification
 - robust outlier detection using support vector machines (svm)
 - optimized for batcorder recordings
 - ~0.3 seconds per recording

Sonntag, 5. Dezember 2010

Software comparison

- All applications are fast and allow manual control/insights -> no black box!
- Input files
 - Omnibat broadest
 - BatScope / batIdent limited
- Mature applications
 - BatScope and batIdent with both around 22 to 28 species/complexes
 - performance of around 85% to 95% with test calls
 - 60% to 90% with field recordings, still some exceptions
 - batldent has broadest reference base (70000 signals)

What we've learned

- batcorder and our software is used since 2004
 - software used with other hardware as well
- tuning software to hardware improves quality
 - sensitivity and recording threshold
 - analysis threshold can be fixed accordingly
- references recorded with same hardware
 - frequency response
 - amplification/gain

Perspectives

Regional species composition

- taking species distribution into account
- dangerous, but can improve performance
- only reference calls from region
- Detection of "unknown" species
 - recognize calls as *unknown calls*
 - otherwise: high bio-diversity ;-)

• Most important: how to interpret the recorded data?

Summary

• Most species can be acoustically detected

Automation

- more economical data collection
- necessary for comparisons of locations, habitat usage surveys and monitoring

• Automation in detection

- multiple devices available
- most suffer from problems still (directionality, calibration)
- Automation in identification
 - three tools available
 - BatScope and batIdent show very similar results
 - these two have reached the same level as human experts for a large number of species
 - Omnibat limited to Northern Europe at the moment
 - Coupling of hard- and software will give the best results

